miércoles, 9 de mayo de 2018

HOW TO DERIVATE FUNCTIONS POWERS WHERE THE BASE AND THE EXPONENT ARE FUNCTIONS?


Here we are in the presence of a composite function, where the most external function is Xn
 

and the innermost is X, but in this case the exponent n is also a function, so the general form of these functions is: Y=(f(x))g(x)  This type of functions can be solved by applying logarithmic derivation, but there is a general formula to derive them which is:


Y' = g'(x)(f(x))g(x)Lnf(x) + g(x)f'(x)(f(x))g(x)-1

To facilitate the calculations, only the two functions that make up Y must be identified and their derivatives calculated, and then carefully included in the formula. Let's see 5 examples.
Calculate Y'
1)    Y= z3z   The base function is : f(z)= z and the  exponent function is: g(z)= 3z  
 Y' = 3(z)3zLn(z) + 3z(1)(z)3z-1
2)    Y= (sent)cost  The base function is : f(t)= sent and the  exponent function is: g(t)= cost

  Y' = -sent(sent)costLn(sent) + cost(cost)(sent)cost-1
3)    Y= (tangt + cost)t+3  The base function is : f(t)= (tgt + cost) and the  exponent function is:g(t)= t+3
  Y' = t(tangt + cost)t+3Ln(tangt + cost) + t+3(sec2t -sent)(tgt + cost)t+2
4)    Y= (secx)cotgx  The base function is : f(x)= secx and the  exponent function is: g(x)= cotgx
Y' = -cosec2x(secx)cotgxLn(secx) + cotgx(tgx.secx)(secx)cotgx-1
5)    Y= (Lnx)cosecx  The base function is : f(x)= Lnx and the  exponent function is: g(x)= cosecx
  Y' = -cotgx.cosecx(Lnx)cosecxLn(Lnx) + cosecx(1/x)(Lnx)cosecx-1



I hope you have been useful, any suggestions or comments let me know. If you want you can help me grow this blog by sharing on your social networks or with a small donation:
BTC 1Eqtwfvkgq4oDFWF3tSNL9X9xfvaZBqHqA
LTC LXUGWJkS3oGLj7ycP2RXUkDkNghJDwSNvG
ETH 0x8c0B9E801861d83D0a3d2f3D84cF88237C490968

No hay comentarios.:

Publicar un comentario